发表在 CVPR 2019 Oral [1]
¶ Algorithm
give $I$ such that minimize cost function $E$.
where
- $I = \frac{1}{N_n} \sum{\omega \cdot q}$
- $E = || q - I ||_2^2$
- possible windows: $S = {L, R, U, D, NW, NE, SW, SE}$
- input of pixel: $q$, output of pixel: $I$
- local window: $\Omega$, pixel in window $\Omega$: $q$, kernel_weight: $\omega$
¶ Background
¶ Edge-preserving filters
Two categories
¶ global optimization based algorithms
- total variation (TV) algorithm
- iterative shrinkage approach
- relative total variation algorithm
- weighted least squares algorithm
¶ local optimization based algorithms
- bilateral filter 双边滤波器[2]
- bilateral filter accelerated versions
- guided filter 导向滤波
- guided filter extensions
- rolling guidance filter
- mutual structure joint filtering
- curvature filter[3]
¶ Filtering Fundamentals
¶ common assume
-
image is piecewise linear
-
approximate a pixel as the weighted average of its neighbor pixels over a local window
$$
I_i’ = \sum_{j \in \Omega_i} \omega_{ij} q_j
$$
¶ cost function
$$
E_i = { {|| I_i - I_i’ ||}_2 }^2
$$
$$
= (I_i - \sum_{j \in \Omega_i} \omega_{ij} q_j) ^ 2
$$
¶ trade off
- manipulating the input image towards a desired target 去噪声
- keeping it close to the original 保真
¶ Type of typical edges [4]
-
step edge
1
2
3
4
5┌─────
│
│
│
─────┘ -
ramp edge
1
2
3
4
5┌─────
/
/
/
─────┘ -
roof edge
1
2
3
4
5/\
/ \
/ \
/ \
/ \ -
line edge
1
2
3
4
5┌─┐
│ │
│ │
│ │
─────┘ └─────
这些函数是连续但不可导的(考虑$|x|$)
¶ Anything
- 1.2. Problem and Motivation 部分用 $g(x, y)$ 和 Taylor expansion 来说明在边缘处,两侧点的取值差距较大。因此跳跃点两侧应当分开来进行考虑。
¶ Definition of side window
-
2. Side Window Filtering Technique 中对参数 $\varphi$ 的说明不足。如下图所示,论文中认为 $OD$ 是定长 $r$,矩形 $Q$ 是固定的;而 $OA$ 为变长 $\varphi$,矩形 $P$ 是可伸缩的
1
2
3
4
5A┌─────┐B
│ P │
O├─────┤E
│ Q │
D└─────┘C -
论文中认为 $OE$ 线条的宽度为 $1$ 像素,而其他线条宽度为 $0$
¶ I Don’t Understand
It is worth noting that optimization problem of the form similar
to eq. (2) is found in many applications including coloriza-
tion [14][22] and image segmentation [25][28], where the
weight functions are usually referred to as affinity functions.
Nonlinear approximation filtering such as median filtering
can also be formulated as a similar form of optimization
problem