发表在 CVPR 2019 Oral [1]

原文 pdf 链接

作者在知乎上的介绍

Algorithm

give $I$ such that minimize cost function $E$.

where

  • $I = \frac{1}{N_n} \sum{\omega \cdot q}$
  • $E = || q - I ||_2^2$
  • possible windows: $S = {L, R, U, D, NW, NE, SW, SE}$
  • input of pixel: $q$, output of pixel: $I$
  • local window: $\Omega$, pixel in window $\Omega$: $q$, kernel_weight: $\omega$

Background

Edge-preserving filters

Two categories

global optimization based algorithms

  • total variation (TV) algorithm
  • iterative shrinkage approach
  • relative total variation algorithm
  • weighted least squares algorithm

local optimization based algorithms

  • bilateral filter 双边滤波器[2]
  • bilateral filter accelerated versions
  • guided filter 导向滤波
  • guided filter extensions
  • rolling guidance filter
  • mutual structure joint filtering
  • curvature filter[3]

Filtering Fundamentals

common assume

  • image is piecewise linear

  • approximate a pixel as the weighted average of its neighbor pixels over a local window
    $$
    I_i’ = \sum_{j \in \Omega_i} \omega_{ij} q_j
    $$

cost function

$$
E_i = { {|| I_i - I_i’ ||}_2 }^2
$$

$$
= (I_i - \sum_{j \in \Omega_i} \omega_{ij} q_j) ^ 2
$$

trade off

  1. manipulating the input image towards a desired target 去噪声
  2. keeping it close to the original 保真

Type of typical edges [4]

  • step edge

    1
    2
    3
    4
    5
         ┌─────



    ─────┘
  • ramp edge

    1
    2
    3
    4
    5
              ┌─────
    /
    /
    /
    ─────┘
  • roof edge

    1
    2
    3
    4
    5
        /\
    / \
    / \
    / \
    / \
  • line edge

    1
    2
    3
    4
    5
         ┌─┐
    │ │
    │ │
    │ │
    ─────┘ └─────

这些函数是连续但不可导的(考虑$|x|$)

Anything

  • 1.2. Problem and Motivation 部分用 $g(x, y)$ 和 Taylor expansion 来说明在边缘处,两侧点的取值差距较大。因此跳跃点两侧应当分开来进行考虑。

Definition of side window

  • 2. Side Window Filtering Technique 中对参数 $\varphi$ 的说明不足。如下图所示,论文中认为 $OD$ 是定长 $r$,矩形 $Q$ 是固定的;而 $OA$ 为变长 $\varphi$,矩形 $P$ 是可伸缩的

    1
    2
    3
    4
    5
    A┌─────┐B
    │ P │
    O├─────┤E
    │ Q │
    D└─────┘C
  • 论文中认为 $OE$ 线条的宽度为 $1$ 像素,而其他线条宽度为 $0$

I Don’t Understand

It is worth noting that optimization problem of the form similar
to eq. (2) is found in many applications including coloriza-
tion [14][22] and image segmentation [25][28], where the
weight functions are usually referred to as affinity functions.
Nonlinear approximation filtering such as median filtering
can also be formulated as a similar form of optimization
problem


  1. What is Oral? ↩︎

  2. https://zh.wikipedia.org/zh-cn/双边滤波器 ↩︎

  3. https://github.com/YuanhaoGong/CurvatureFilter ↩︎

  4. https://www.researchgate.net/figure/Type-of-Edges-a-Step-Edge-b-Ramp-Edge-c-Line-Edge-d-Roof-Edge_fig1_228349759 ↩︎